Complete Markets, Discrete Time
In this post, I present the so-called martingale method in a complete market setup where the time scale is discrete and the probability space is discrete as well. In the absence of arbitrage, there is a strictly positive stochastic discount factor (SDF) and a risk neutral measure can be defined. The market is said to be complete if any consumption stream which is adapted to the underlying filtration can be traded using the available financial instruments. If this is the case, the SDF and the risk neutral measure are both unique. A portfolio optimization problem without labour income is defined. Despite the dynamic context, the maximization problem is essentially static. The gradient of the utility function has to be proportional to the SDF, and the optimal plan is found by varying the coefficient of proportionality to satisfy the intertemporal budget constraint. The optimal consumption plan is thus in principal easily derived. The corresponding portfolio policy has to be identified in a second step however.