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The martingale representation problem in its simplest form is the following.
Given a filtration generated by a martingale M and given another martingale N
adapted to the filtration, can we express N as a stochastic integral with M as the
integrator? The martingale N is generally closed, i.e. it can be expressed as the
conditional expectation of a terminal variable Nr. In this case, the integrand H;
of the stochastic integral representation is heuristically the sensitivity of Nt to
the shock dMy.The Brownian filtration is the most important example where a
Martingale Representation Theorem holds.

The theory of martingale representation is concerned with the following problem.

Consider a filtered probability space (2, F, P) with index space T = [0, 7] where
T is finite. Such a space supports a set of martingales M against which we can
compute stochastic integrals for predictable integrands.

We are given an Fp-measurable random variable Xp. It induces a martingale
(E¢[X1])ter. This process represents, within the model, the anticipation of
Xr at any point ¢t. The changes in E;[Xr] as a function of ¢ reflect the real
time acquisition of information on X7. New information comes as surprises
as modeled in martingale differences (see this post). Heuristically, martingale
representation asks the following question: can we represent the surprises in
(E¢[X7])ter for any X as a linear function of the (contemporaneous) surprises
embedded in our set M of martingales. More precisely, can we represent the
martingale (E:[XT]):eT as a sum of stochastic integrals against some martingales

in M.

A striking incarnation of this issue is found when the filtered probability space
is generated by a Brownian motion'.

Theorem (Martingale Representation for the Brownian Filtration): Let
F be the smallest right continuous and complete filtration generated by a uni-
variate Brownian motion (By)ier. Let X be an Fr-measurable random variable
with finite second moment Eq[X2] < co. Then there is a predictable process

IThe following results can be found in Bass[2011], p. 80.
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(Hy)ter with fOT H2ds < oo such that:

T
Xr = E[X7] +/ H,dB,.
0

]
In the same context as above, we have a simple yet important corollary:

Corollary: For any square integrable*right continuous martingale (My)ser with
My =0, there exists a predictable process (Hy)ier with fOT H2ds < oo such that:

t
Mt:/ H,dB,.
0

In other words, all square integrable right continuous martingales with initial
value zero are Brownian stochastic integrals. Actually, in our context, all square
integrable martingales have a version which is still a martingale and is right
continuous with left limits. They can therefore be represented as Brownian
integrals. Since Brownian integrals have continuous trajectories, all square
integrable martingales in this setup have a continuous version. Finally, one can
extend the above result to show that all local martingales can be represented as
a Brownian stochastic integral.

It is quite easy to generate setups where the filtration is the minimal filtration
generated by a given martingale (M )ct, and yet, the filtration supports other
martingales which cannot be written as sotchastic integrals of (M;)ier. In this
post, an example is given where T is discrete and (My)ier has standardized
gaussian increments. If, on the other hand, (M;):er has binomial increments,
the martingale representation holds with the set M consisting of (M;)ier. A
solution to recover a martingale representation result when it does not hold
for M = {(M)ter} is to add other martingales in M, based on higher order
moments of (M;)ier for instance. Indeed, the problems generally come from the
difficulty of generating non linear functions of (M;)er through the stochastic
integral which, in the end, is just a linear reweighting of the increments of

(Mt)te'fr-

Given the above remarks, the Brownian martingale representation theorem looks
like a nice accident. I now sketch the proof. An Fpr-measurable random variable
is, roughly speaking, a function of the increments of the Brownian motion. A
simple example would be a function f(By, — By,, - , B, — Bt,_,) where the
time intervals [¢;,¢;—1] do not overlap. Such functions can however be recovered

2Eo[M2] < oco.
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through Fourier transform from products of complex exponentials®:
exp(iu1 (By, — By,)) -+~ exp(iun(Bt, — By, _,))-

It is conceivable that if a martingale representation were to hold for such a
function, the representation could be extended by limiting arguments to all
Fr-measurable random variables. However, Ito calculus implies that:

. 1
exp(iug(Bs — By, _,) + iui(t —tg—1)) =14

/ iuy, exp(iug(Bs — By, _,) + 5“%(5 — tr—1))dBs,

tp—1

i.e.
_ 1, , 1,
d | exp(iug(By — By, _,) + §uk(t —tg-1)) | = exp(zuk(Bthtkfl)+§uk(t7tk_1))dBt.

This complex exponential is a geometric martingale with initial value 1 at
t=1p_1.

From this, we get (taking t = t; and rearranging terms):

. 1
Zy—1 = exp(iug(By, — By,_,)) = eXP(—guz(tk —tp-1))+

tr 1
/ iuy, exp(iug(Bs — By, _,) + §ui(s — t1))dBs

te—1
ty
=Fp_1+ Hj,_1(s)dBs,
te—1
where Zj,_1 is the random variable of interest, Fj_; is a function of non random
parameters only and Hy_1 is the integrand within the stochastic integral. We thus
have the right representation for a single exponential of a Brownian increment.

When multiplying two such terms attached to non overlapping intervals, say
[tk—1,tk] and [tk,tr+1], the product rule entails no covariation terms because
the stochastic integrals refer to non overlapping time intervals:
ti tr41
[ Hj,_1(s)dBs, Hy(s)dBs] = 0.

tr—1 ty

We thus have the following representation for the product:

tr tet+1
Zy1Zy = Frp_1Fy +/ FyHy_1(s)dB, +/ Zy—1Hy(s)dBs,

th—1 tk
3In our context, the Fourier transform amounts to mixing functions indexed by (u1, ..., un)
using a weighting scheme f(u1,...,un).



which still has the right structure. It is now clear that any product involving
a finite number of such exponentials involving non overlapping intervals has a
martingale representation. The rest of the proof is a matter of spelling out the
limiting arguments that allow to extend* the representation to any function
f(Bt, — By, -+, By, — By, _,) and then to any Fp-measurable random variable
(through a density argument).

In the Brownian context thus, Brownian integrals allow to generate all the local
martingales supported by the filtration®. Amongst them are all the martingales
generated by moments B, for instance X, = B —t =2 fg B.dB..

A striking illustration of this involves Hermite polynomial functions. If
H,(z,y)=(%)* hn(\/%) (n > 0) where h,(-) are Hermite polynomials®, then
H, (By,t) are martingales and we have the following integral representation:

t t tn—1 t1
H, (B, t) = / nH,_1(By,u)dB, = n! / / e / dBsdBy, ---dBy, .
0 0 JO 0

This result can be found for instance in Chung[1990], chapter 6.

Reference: Chung K.L and R.J. Williams, 1990 : An introduction to Stochastic
Integration, Birkhauser.
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4Through the Fourier transform, which amounts to integrating the integral representations
attached to different parameters (u1,...,uy), using a weighting scheme f(uy,...,un).

5Tt is important that the filtration be the minimal filtration generated by the Brownian
motion, i.e. the smallest right continuous and complete filtration generated by the Brownian
motion.

GHO(‘Z'zy) = 1,H1($,'y) = Z,Hg(x,y) =% - Yseo
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