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The martingale representation problem in its simplest form is the following.
Given a filtration generated by a martingale M and given another martingale N
adapted to the filtration, can we express N as a stochastic integral with M as the
integrator? The martingale N is generally closed, i.e. it can be expressed as the
conditional expectation of a terminal variable NT . In this case, the integrand Ht

of the stochastic integral representation is heuristically the sensitivity of NT to
the shock dMt.The Brownian filtration is the most important example where a
Martingale Representation Theorem holds.

The theory of martingale representation is concerned with the following problem.

Consider a filtered probability space (Ω,F , P ) with index space T = [0, T ] where
T is finite. Such a space supports a set of martingalesM against which we can
compute stochastic integrals for predictable integrands.

We are given an FT -measurable random variable XT . It induces a martingale
(Et[XT ])t∈T. This process represents, within the model, the anticipation of
XT at any point t. The changes in Et[XT ] as a function of t reflect the real
time acquisition of information on XT . New information comes as surprises
as modeled in martingale differences (see this post). Heuristically, martingale
representation asks the following question: can we represent the surprises in
(Et[XT ])t∈T for any XT as a linear function of the (contemporaneous) surprises
embedded in our setM of martingales. More precisely, can we represent the
martingale (Et[XT ])t∈T as a sum of stochastic integrals against some martingales
inM.

A striking incarnation of this issue is found when the filtered probability space
is generated by a Brownian motion1.

Theorem (Martingale Representation for the Brownian Filtration):Let
F be the smallest right continuous and complete filtration generated by a uni-
variate Brownian motion (Bt)t∈T. Let XT be an FT -measurable random variable
with finite second moment E0[X2

T ] < ∞. Then there is a predictable process
1The following results can be found in Bass[2011], p. 80.
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(Ht)t∈T with
∫ T

0 H2
sds <∞ such that:

XT = E[XT ] +
∫ T

0
HsdBs.

�

In the same context as above, we have a simple yet important corollary:

Corollary: For any square integrable2right continuous martingale (Mt)t∈T with
M0 = 0, there exists a predictable process (Ht)t∈T with

∫ T
0 H2

sds <∞ such that:

Mt =
∫ t

0
HsdBs.

�

In other words, all square integrable right continuous martingales with initial
value zero are Brownian stochastic integrals. Actually, in our context, all square
integrable martingales have a version which is still a martingale and is right
continuous with left limits. They can therefore be represented as Brownian
integrals. Since Brownian integrals have continuous trajectories, all square
integrable martingales in this setup have a continuous version. Finally, one can
extend the above result to show that all local martingales can be represented as
a Brownian stochastic integral.

It is quite easy to generate setups where the filtration is the minimal filtration
generated by a given martingale (Mt)t∈T, and yet, the filtration supports other
martingales which cannot be written as sotchastic integrals of (Mt)t∈T. In this
post, an example is given where T is discrete and (Mt)t∈T has standardized
gaussian increments. If, on the other hand, (Mt)t∈T has binomial increments,
the martingale representation holds with the set M consisting of (Mt)t∈T. A
solution to recover a martingale representation result when it does not hold
for M = {(Mt)t∈T} is to add other martingales in M, based on higher order
moments of (Mt)t∈T for instance. Indeed, the problems generally come from the
difficulty of generating non linear functions of (Mt)t∈T through the stochastic
integral which, in the end, is just a linear reweighting of the increments of
(Mt)t∈T.

Given the above remarks, the Brownian martingale representation theorem looks
like a nice accident. I now sketch the proof. An FT -measurable random variable
is, roughly speaking, a function of the increments of the Brownian motion. A
simple example would be a function f(Bt1 − Bt0 , · · · , Btn − Btn−1) where the
time intervals [ti, ti−1] do not overlap. Such functions can however be recovered

2E0[M2
T ] <∞.
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through Fourier transform from products of complex exponentials3:

exp(iu1(Bt1 −Bt0)) · · · exp(iun(Btn −Btn−1)).

It is conceivable that if a martingale representation were to hold for such a
function, the representation could be extended by limiting arguments to all
FT -measurable random variables. However, Ito calculus implies that:

exp(iuk(Bt −Btk−1) + 1
2u2

k(t− tk−1)) = 1+

∫ tk

tk−1

iuk exp(iuk(Bs −Btk−1) + 1
2u2

k(s− tk−1))dBs,

i.e.

d

(
exp(iuk(Bt −Btk−1) + 1

2u2
k(t− tk−1))

)
= exp(iuk(Bt−Btk−1)+1

2u2
k(t−tk−1))dBt.

This complex exponential is a geometric martingale with initial value 1 at
t = tk−1.

From this, we get (taking t = tk and rearranging terms):

Zk−1 = exp(iuk(Btk −Btk−1)) = exp(−1
2u2

k(tk − tk−1))+

∫ tk

tk−1

iuk exp(iuk(Bs −Btk−1) + 1
2u2

k(s− tk))dBs

= Fk−1 +
∫ tk

tk−1

Hk−1(s)dBs,

where Zk−1 is the random variable of interest, Fk−1 is a function of non random
parameters only and Hk−1 is the integrand within the stochastic integral. We thus
have the right representation for a single exponential of a Brownian increment.

When multiplying two such terms attached to non overlapping intervals, say
[tk−1, tk] and [tk, tk+1], the product rule entails no covariation terms because
the stochastic integrals refer to non overlapping time intervals:

[
∫ tk

tk−1

Hk−1(s)dBs,

∫ tk+1

tk

Hk(s)dBs] = 0.

We thus have the following representation for the product:

Zk−1Zk = Fk−1Fk +
∫ tk

tk−1

FkHk−1(s)dBs +
∫ tk+1

tk

Zk−1Hk(s)dBs,

3In our context, the Fourier transform amounts to mixing functions indexed by (u1, . . . , un)
using a weighting scheme f̂(u1, . . . , un).
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which still has the right structure. It is now clear that any product involving
a finite number of such exponentials involving non overlapping intervals has a
martingale representation. The rest of the proof is a matter of spelling out the
limiting arguments that allow to extend4 the representation to any function
f(Bt1 −Bt0 , · · · , Btn −Btn−1) and then to any FT -measurable random variable
(through a density argument).

In the Brownian context thus, Brownian integrals allow to generate all the local
martingales supported by the filtration5. Amongst them are all the martingales
generated by moments Bα

t , for instance Xt = B2
t − t = 2

∫ t
0 BsdBs.

A striking illustration of this involves Hermite polynomial functions. If
Hn(x, y) =

(
y
2
)n

2 hn( x√
2y ) (n ≥ 0) where hn(·) are Hermite polynomials6, then

Hn(Bt, t) are martingales and we have the following integral representation:

Hn(Bt, t) =
∫ t

0
nHn−1(Bu, u)dBu = n!

∫ t

0

∫ tn−1

0
· · ·
∫ t1

0
dBsdBt1 · · · dBtn−1 .

This result can be found for instance in Chung[1990], chapter 6.

Reference: Chung K.L and R.J. Williams, 1990 : An introduction to Stochastic
Integration, Birkhauser.

Bass R.F., 2011, Stochastic Processes, Cambridge University Press
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4Through the Fourier transform, which amounts to integrating the integral representations
attached to different parameters (u1, . . . , un), using a weighting scheme f̂(u1, . . . , un).

5It is important that the filtration be the minimal filtration generated by the Brownian
motion, i.e. the smallest right continuous and complete filtration generated by the Brownian
motion.

6H0(x, y) = 1, H1(x, y) = x, H2(x, y) = x2 − y, . . .
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