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The purpose of this note is to introduce diffusions which are made up of a drift
and a martingale component. I start from the elementary discrete time setup
where the drift of the process is most easily understood. I then explain how the
specialized decomposition of a diffusion into a drift and a Brownian integral can
arise as the limit of the decompositions obtained on the discretized process.

Doob’s decomposition
We introduced the martingale concept in the post on martingales. In particular,
we explained (see the post on martingales for notation) that in discrete time
(T = N), a martingale (Mt)t∈T has martingale differences ∆Mt = Mt −Mt−1
which are conditionally centered:

Et[∆Mt+1] = 0.

We now wish to relax this constraint and consider more general processes.

Starting from an adapted process (Xt)t∈T, we can consider its differences ∆Xt =
Xt −Xt−1 and define their one step ahead conditional expectation:

∆At+1 = Et[∆Xt+1].

The random variables ∆At+1 are by construction Ft measurable. In the language
introduced to describe stochastic integrals, this process is predictable. Removing
∆At+1 from ∆Xt+1 is a centering operation. Indeed, setting ∆Mt+1 = ∆Xt+1−
∆At+1, we get:

Et[∆Mt+1] = 0.

The variables ∆Mt+1 are martingale differences. Cumulating differences, we can
recover the level Xt through:

Xt = X0 +
t∑

k=1
∆Ak +

t∑
k=1

∆Mk.
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Setting M0 = 0 and A0 = 0, we can now define two ‘level’ processes (At)t∈T and
(Mt)t∈T through:

At = A0 +
t∑

k=1
∆Ak, t ≥ 1,

Mt = M0 +
t∑

k=1
∆Mk, t ≥ 1.

The first process (At)t∈T is predictable in the sense that each At is Ft−1 measur-
able (its value at date t is known at date t− 1), and the second process (Mt)t∈T
is a martingale. Both processes are of course adapted to the filtration. We can
finally write:

Xt = X0 +At +Mt.

This decomposition is called Doob’s decomposition.

It should be stressed that ∆At are one step ahead predictions. Two step ahead
predictions for instance involve predicting ∆At one step ahead:

Et[∆At+1 + ∆At+2] = ∆At+1 + Et[∆At+2].

By constraining the sign of (∆At)t∈T, t≥1, we obtain sub and supermartingales.
A supermartingale is a process which is expected to decrease or remain stable.
It is obtained by forcing (∆At)t∈T, t≥1 to be negative. A submartingale is a
process which is expected to increase or remain stable, that is (∆At)t∈T, t≥1 is
forced to be positive (a martingale is thus both a super and a submartingale).
Accordingly, the process (At)t∈T is monotonic in both cases.

Quasimartingales
We now look at the case of a continuous time process (Xt)t∈[0,T ] where T <∞.
To carry out the above decomposition, we can introduce a discretization scheme
and apply the previous calculations to the process obtained thereby. For each
discretization grid πn of [0, 1] indexed by n (t0 = 0, . . . , tn = T ), we can thus
split the discretized version (Xti)ti∈πn

of the original process into a discrete
time martingale and the cumulated expected changes along the discretization
intervals:

Xn
ti = X0 +Anti +Mn

ti .

As the grid is refined (n tending to infinity), one can hope to recover:

Xt = X0 +At +Mt,

where (Mt)t∈R+ is a continuous time martingale and (At)t∈[0,T ] is the limit of
the discretized processes (Ati)ti∈πn

, i.e. the cumulated infinitesimal expected
changes of (Xt)t∈[0,T ].
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The first results generalizing the discrete time decomposition to the continuous
time setup and ensuring that the above discretization scheme converges con-
cerned submartingales and supermartingales, for which the process (At)t∈[0,T ]
is monotonic (these assumptions lead to the Doob-Meyer decomposition, the
continuous time version of Doob’s decomposition). A natural generalization was
sought among processes for which (At)t∈[0,T ] would be of bounded variation,
since this class of functions is the simplest extension of monotonic functions (any
bounded variation function is the difference of two bounded monotonic functions).
This led to the concept of quasimartingales, where the main ingredient consists
in bounding the following sums :

E[V (π)] = E

[
n∑
i=1

Eti−1 [
∣∣Xti −Xti−1

∣∣ |Fti−1 ]
]
≤ K <∞,

uniformly with respect to partitions π = (t0 = 0, . . . , tn = T ) of [0, T ] of any size
n. The decomposition of a quasimartingale involves a process (At)t∈[0,T ] which
has finite expected variation and a fortiori almost everyhere bounded variation.

Stochastic integration can be easily extended from martingales to quasimartin-
gales since bounded variation functions can be used as integrators within a well
understood integration theory (cf. Lebesgue-Stieltjes integration). What this
means for mathematical finance is that most continuous time calculus can be
carried out assuming prices follow quasimartingales1.

In the case of processes with continuous paths, necessary and sufficient conditions
have been identified (see Fisk, Quasi-Martingales, Transactions of the American
Mathematical Society, 1965) for (Xt)t∈[0,T ] to be a quasimartingale, in which case
the discretization process described above delivers a martingale with continuous
paths (Mt)t∈[0,T ] and a bounded variation process (At)t∈[0,T ] with continuous
paths as well. This decomposition is unique.

Ito diffusions
We now wish to specialize the above setup so as to get tractable and flexible
specifications for a process (Xt)t∈[0,T ]. We will assume the filtration is generated
by a one dimensional Brownian motion (Bt)t∈[0,T ]. We assume the process
(At)t∈[0,T ] is of the form: ∫ t

0
r(Xu)du.

We thereby select a specific class of bounded variation processes, those that can
be written as the integral of a function. In addition, we constrain that function
to be a function of the state variable Xu. Similarly the martingale process

1Actually, a continuous time process for which stochastic integration can be defined is called
a semimartingale and quasimartingales are a strict subset of semimartingales, but the gap is
very small from a modeling perspective.
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(Mt)t∈[0,T ] is assumed to be a Brownian stochastic integral:∫ t

0
σ(Xu)dBu,

where again σ(·) is a function of the state variable Xu only. The functions r(·)
and σ(·) are real measurable functions. We thus get:

Xt = X0 +
∫ t

0
r(Xu)du+

∫ t

0
σ(Xu)dBu.

The function r(·) is called the drift of the diffusion and the function σ(·) is
the volatility of the diffusion. The interpretation of these two terms is now
obvious. The drift measures the infinitesimal expected change of the process,
while volatility measures the infinitesimal surprises.

The technical conditions usually applied to the drift and volatility coefficients
are (almost everywhere): ∫ T

0
|r(Xu)| du <∞,∫ T

0
σ(Xu)2du <∞.

The first condition ensures that (At)t∈[0,T ] is almost everywhere of bounded
variation2, while the second is needed to define the Brownian integral.

We finally note that it is customary to summarize the integral equations through
the differential notation:

dXt = r(Xt)dt+ σ(Xt)dBt,

with an initial condition X0. This should however merely be seen as a shorthand
for the integral equation.
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2To be precise, one would have to impose stronger condition in the quasimartingale context.
In spirit, the variation has to be integrable:

E[
∫ T

0
|r(Xu)| du] < ∞.

The condition spelled out in the text corresponds to the requirement that the process (Xt)t∈[0,T ]
be a semimartingale, rather than a quasimartingale.
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