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I review the impact on the future price level of random noise in the return process.
This effect operates through the non-linearity of compounding. I look at how an
increased level of volatility changes the price trajectories. Normally distributed
(say) return variability lowers the median of the price distribution and skews it
towards the upside. Over time, the skew increases as compounding operates. The
majority of price trajectories are depressed by volatility. The mean price level
is however unaffected as the lower trajectories are made up by a few ‘explosive’
ones. This will be important to bear in mind when discussing portfolio choice
and the effect of portfolio rebalancing.

Volatility and compounding Consider a set of yearly returns (say) (rt)t=1,...,T .
The compounded return over the period [0, T ] is:

(1 + r1) · · · (1 + rT ).

If we want to assess the impact of the variability of returns, we might wish to
compare this to (1 + r̄)T , where:

r̄ = 1
T

T∑
t=1

rt.

Introducing the deviations to the mean εt = rt − r̄ (t = 1, . . . , T ), we now need
to compare:

(1 + r̄ + ε1) · · · (1 + r̄ + εT )
and (1 + r̄)T . This is equivalent to comparing 1/T times the logs of these
quantities, but then the inequality:

1
T

T∑
t=1

log(1 + r̄ + εt) ≤ log( 1
T

T∑
t=1

rt) = log(1 + r̄),

is a simple consequence of the concavity of the log1. Given that the log is strictly
1For a concave function f(·) (R→ R), if

∑n

i=1 λixi is a convex combination of (xi)i=1,··· ,n,
we have:

n∑
i=1

λif(xi) ≤ f(
n∑

i=1

λixi).

This property can be used to characterize concavity.
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concave, we know that the inequality is strict unless the return series is constant.
A simple second order approximation of the log function yields:

1
T

T∑
t=1

log(1 + r̄ + εt) ≈ log(1 + r̄)− 1
2

1
(1 + r̄)2V ar(ε),

where V ar(ε) is the empirical variance of return shocks:

V ar(ε) = 1
T

T∑
t=1

ε2
t .

The former relationship can be read as linking the geometric mean return and
the arithmetic mean:(

T∏
t=1

(1 + rt)
)1/T

≈ exp
(

log(1 + r̄)− 1
2

1
(1 + r̄)2V ar(ε)

)
.

We thus see that variability in the returns (rt)t=1,...,T lowers the compounded
return. Of course, this result hinges on the anchoring of the standard mean return.
In other words, the volatlity-drag is obtained when holding the average standard
return constant and increasing the dispersion of realized standard returns around
it. Variability in log-returns for a given mean log-return would have no effect on
compounding2. The volatility-drag should not be over-interpreted. I now look
at the consequences of volatility in more structured models of price dynamics,
starting with the discrete time log normal model presented in this post.This will
allow to identify the impact of volatility on the distribution of compounded
returns and thereby better understand the volatility-drag. To simplify the
description, I assume the expected returns (rt)t=1,··· ,T and volatilities (σt)t=1,··· ,T

are deterministic. In this setup, the compounded return over T periods is:

T∏
t=1

exp(rt + σtεt −
1
2σ

2
t ) = exp(

T∑
t=1

rt +
T∑

t=1
σtεt −

T∑
t=1

1
2σ

2
t ).

The median realization of
∑T

t=1 σtεt is zero and under this scenario, the com-
pounded return is just:

exp(
T∑

t=1
rt −

T∑
t=1

1
2σ

2
t ).

The mean of the compounded return however is:

E0

[
exp(

T∑
t=1

rt +
T∑

t=1
σtεt −

T∑
t=1

1
2σ

2
t )
]

= exp(
T∑

t=1
rt).

2One could therefore say that the volatility-drag is purely an artefact of the choice of units.
Returns ar not measured in decibels, so to speak (decibels is a logarithmic scale for sound).
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It is therefore apparent that volatility lowers the median compounded return
but not the mean compounded return. Compared to the median, the mean is
pushed upwards by the right tail of the distribution of shocks. This reflects
the convexity of the exponential function! Volatility drives a constant wedge
between the mean and the median. This has strong consequences over the long
run. Assume t measures time in years, the annualized compounded return can
be written:

exp
(

1
T

(
T∑

t=1
rt −

T∑
t=1

1
2σ

2
t

)
+ 1
T

(
T∑

t=1
σtεt

))
.

It is easy to design conditions such that as T goes to infinity:

1
T

(
T∑

t=1
rt −

T∑
t=1

1
2σ

2
t

)
→ c,

where c is a constant, and (law of large numbers) almost surely:

1
T

(
T∑

t=1
σtεt

)
→ 0.

This means that in the long run, annualized returns get very close to the median
return and the right tail of the annualized return distribution (i.e. the upside)
becomes negligible. Volatility indeed drags down the annualized return with
probability one in the long run. This suggests that a long term investor might
choose a portfolio so as to maximize c. Although the annualized return converges
to c, the set of non annualized compounded returns still contain trajectories
which are much above cT as the volatility of the ‘compounded’ return shock:

T∑
t=1

σtεt,

grows like: (
T∑

t=1
σ2

t

)1/2

∝
√
T .

From a finite horizon investment perspective finally, whether volatility is good
or bad depends on how you weigh the different scenarios into your investment
objective. It thus depends on the chosen utility function. When the utility
function is logarithmic, the investor indeed maximizes c. This whole topic
will require a specific development. Continuous time Unsurprisingly, the same
reasoning can be carried out in continuous time using the standard geometric
diffusions to model the price process:

dPt

Pt
= rtdt+ σtdWt.
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The only difference to the discrete case above is that sums are replaced by
integrals. Conditions have to be designed such that for instance (law of large
numbers)3:

1
T

(∫ T

0
σtdWt

)
→ 0,

almost surely as T goes to infinity. When this is satisfied, the long run annualized
return is characterized by:

exp
(

1
T

(∫ T

0
rtdt−

∫ T

0

1
2σ

2
t dt

))
.

When comparing asset returns in the long run, one can then concentrate on the
log of the above quantity, i.e.:

1
T

(∫ T

0
(rt −

1
2σ

2
t )dt

)
.

Some authors (for example Fernholz[2002]) call (rt − 1
2σ

2
t ) the growth rate of

the security although this might be a bit misleading. Notes and references:
There is a literature that argues that investors should optimize the growth rate
(rp,t− 1

2σ
2
p,t) of a portfolio p. This is usually called the Kelly approach to investing.

In the economic tradition, one starts with a utility function, and maximizes the
utility of (say) terminal wealth. One can recover the Kelly investment rule by
using a logarithmic utility function. More generally, optimal portfolios generated
through a utility function contain a fraction of the Kelly optimal portfolio. For
a recent review of the interaction between volatility and growth, see for instance
Dempster[2007].

Dempster, M.A.H, Evstigneev, I.V., and Shenk-Hoppé, K.R. [2007], ‘Volatility-
Induced Financial Growth’, Quantitative Finance, Vol 7 No. 2, April 2007,
151-260.

Fernholz, E.R. [2002], Stochastic Portfolio Theory, Springer.
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3In Fernholz[2002], section 1.3, Fernholz shows that the law of large numbers holds if

limt→∞ t−2
(∫ t

0 σ
2
udu

)
log(log(t)) = 0. The proof of this fact hinges on the time changing

technique and the law of interated logarithm for the Brownian motion.
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